267. Molecular Polarisability: Dipole Moments, Molar Kerr Constants, and Apparent Conformations of Some aw-Dichloro- and -Dibromoalkanes.

By M. ARONEY, D. IZSAK, and R. J. W. LE FÈVRE.

Dipole moments and molar Kerr constants are calculated for various rotational isomers of ten $\alpha\omega$ -dihalgenoalkanes, and compared with measurements made on solutions in carbon tetrachloride at 25°. Results are explained by the solutes' being mixtures of isomers. With dichloroethane 73% of trans- and 27% of gauche-forms appear to be present; with dibromoethane the corresponding figures are 89% and 11%. With the higher members, for which the number of possible conformations is greater, conclusions cannot be definite; specifications are given for those forms in each case which, if present together, could produce μ 's and $_{m}K$'s consistent with those found.

THIS paper deals with relations between the anisotropies of polarisability and the apparent conformations of "flexible" solute molecules at infinite dilution in non-polar media. In particular it reports an examination of ten molecules of type $[CH_2]_n X_2$ (where n = 2, 3, 4, 5, or 10, and X = Cl or Br) in carbon tetrachloride at 25°. Observations and results are summarised under usual 1 headings in Tables 1 and 2, after which their interpretations and bearings on previous data are discussed.

EXPERIMENTAL

The dihalogenoalkanes were either purified commercial samples or were prepared from the corresponding glycols (cf. Vogel²); they were redistilled, and collected at the temperatures

Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953; Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405; Le Fèvre and Le Fèvre, J., 1953, 4041; Rev. Pure Appl. Chem., 1955, 5, 261; Chap. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn., Vol. I, p. 2459. ^a Vogel, "Practical Organic Chemistry," Longmans, London, 3rd edn., 1956, pp. 275-283.

TABLE 1.

Incremental Kerr effects, refractive indexes, dielectric constants, and densities of solutions in carbon tetrachloride at 25°.

$10^{5}w_{2}$	$10^7 \Delta B$	$-10^4\Delta n$	ε ²⁵	d_{4}^{25}	$10^{5}w_{2}$	$10^7 \Delta B$	-104	Δn	ε ²⁵	d_{4}^{25}	
	1,2	-Dichloroeth	ane			1,3-Dichloropropane					
1822	0.024		$2 \cdot 2999$	1.57599	1346	0		. 2	2.3240	1.57718	
3226	0.045		$2 \cdot 3586$	1.56942	2237	0		. 2	2.3895	1·5724ι	
3803	0.029		2.3829	1.56675	2737	0		. 2	2•4259	1.56965	
4966	0.076		$2 \cdot 4345$	1.56153	2816	0	5	2	2.4313	1.56931	
7229	0.121	20	2.5377	1.55144	3562	0	6	2	2.4872	1.56529	
8845	0.152	24	2.6157	1.54432	5072	0	8	2	2.5999	1.55715	
$\sum \Delta n / \sum_{n=1}^{\infty}$	whence $10^7 d$ $\Sigma w_2 = -0^{-1} \sum \Delta d$	$\begin{array}{l} \Delta B = 1 \cdot 31u \\ 028; \ \Delta \varepsilon = \\ / \sum w_2 = -0 \end{array}$	$w_2 + 4.82 = 4.12 w_2 + 0.466.$	$w_2^2; 2.44w_2^2;$	whence	$\frac{\sum \Delta n / \sum w}{\sum \Delta}$	$a_2 = -0$ $d/\sum w_2 =$	0.017; 2 = -0.5	$\sum \Delta \varepsilon / \sum w_{s}$ 542.	$_{1} = 7.27;$	
	1.4	-Dichlorobu	tane			1.8	5-Dichlo	robenta	ne		
949	0.019		2.2837	1.57863	1183	0.030	_	. 9	2.3141	1.57650	
1598	0.034		2.3240	1.57469	1646	0.044	0	-	2.3501	1.57331	
2055	0.041		$2 \cdot 3512$	1.57187	2894	0.075	-	. 2	2.4453	1.56481	
2938	0.058		$2 \cdot 4059$	1.56651	3473	0.097		. 2	2.4871	1.56114	
3378	0.065	0	$2 \cdot 4370$	1.56390	3874	0.110	0	2	2.5215	1.55822	
3565	0.020	1	2.4454	1.56273	5527	0.165		. 2	2.6441	1.54777	
$\sum \Delta r$	whence $10^7 \Delta w_2 = -\frac{10^7 \Delta w_2}{\Delta d_p}$	$\Delta B = 2.14u \\ -0.002; \ \Sigma u \\ /\Sigma w_2 = -0$	$w_2 - 5.57t$ $\Delta \varepsilon / \sum w_2 = 0.616.$	$w_2^2; 6.09;$	ž	$\frac{\sum \Delta n}{\sum w_2}$	${}^{7}\Delta B =$ = 0; Σ $d/\Sigma w_2 =$	$\frac{2 \cdot 40w}{\Delta \varepsilon / \Sigma u} = -0 \cdot 6$	+ 10.8u $v_2 = 7.50$ 577.) ² ; 0;	
					$10^{5}w_{2}$	$10^7 \Delta B$	$10^{5}w_{2}$	$10^4\Delta n$	ϵ^{25}	d_{4}^{25}	
	1,10)-Dichlorode	cane			1,	2-Dibro	moetha	ne		
1386	0·0 3 5		$2 \cdot 3112$	1.57124	3621	0.025	1788		$2 \cdot 2457$	1.59198	
1975	0 ∙05 3		2.3494	1.56566	4701	0.035	1955		$2 \cdot 2473$		
2297	0.064		2.3690	1.56237	6058	0.042	3379	-	$2 \cdot 2622$	1.59859	
3015	0.085	2	2.4128	1.55646	7528	0.052	4651	25	2.2759	1.60424	
3485	0.098	2	2.4441	1.55108	8397	0.063	5090			1.60574	
3528	0.103	2	2.4478	1.55079	13,656	0.103	5492		2.2855	1.60785	
	whence Σ	$10^7 \Delta B / \sum w_2$	= 2.76;		_		0230	34	2.2940	1.01103	
$\sum \Delta r$	$m/\sum w_2 = -\sum_{\Delta d}$	$-0.006; \Sigma 2 / \Sigma w_2 = -0$	$\Delta \varepsilon / \Sigma w_2 = 0.960.$	6 ∙19;	Σ^{wl}	hence 10^7 . $\Delta n / \sum w_2 = \sum$	$\begin{array}{l} \Delta B = 0 \\ = 0.054; \\ \Delta d (\Sigma_{\rm M}). \end{array}$	$\cdot 679w_2$ $\sum \Delta \varepsilon / 2$ - 0.49	+ 0.556 $\sum w_2 = 1$	$w_2^2;$.05;	
								- 0 12	20.		
					$10^{5}w_{2}$	$10^7 \Delta B$	-10	Δn	ε ²⁵	d_{4}^{25}	
	1,3-	-Dibromopro	opane			1,	4-Dibro	mobuta	ne		
2749	0		2.3393	1.59336	1887	0.026	-		2.2938	1.58874	
2998	0		2.3477	1.59426	2564	0.037	•	-	2.3185	1.59026	
3410	0		2.3654	1.59541	3011	0.044	10	-	2.3347	1.509120	
4878	U O		2.4208	1.00018	3409	0.060	15		2°0490 0.9919	1.50416	
0213	0	- 30	2.4030	1.00491	4270	0.070	20		2.2013	1.505410	
9441	ŏ	65	2.7236	1.62281	4000		20		0 100	9	
11,012	1	SAU (Su	0.050.		w S	$r_{\rm nence} 10^{\circ}$	$\Delta B = 0.050$	$\sum A = l$	- 0·100	$w_{2};$	
Σ	$\Delta \varepsilon / \Sigma w_{a} =$	$\frac{\Delta n}{\Delta w_2}$ 3.97; $\sum \Delta d$	= 0.050; $\sum w_{0} = 0$	·323.	<u>_</u> _	$\sum_{n/2} w_2 = \sum_{n/2} v_2$	$\Delta d/\Sigma w$	$z \Delta \varepsilon_{1}$	23.	r.09,	
-	 15	Dihuamaha	· — ·			1	- ,	- modeci	1 <i>M 0</i>		
1049	0.090	-Dioromoper	0.9991	1.58600	1089	0.024	10-21010	-	0.9757	1.58150	
1243	0.029		2.2034 2.3025	1.58670	1110	0.034	-		2.2775	1.58176	
1951	0.043		2.3162	1.58700	1325	0.042		-	2.2873	1.58124	
3401	0.078	-20	2.3840	1.58890	1711	0.054	8	3	2.3040	1.58015	
4473	0·106	$-\bar{2}\bar{7}$	2.4349	1.59029	2042	0.068	10)	2.3188	1.57919	
	whence 107	$\Lambda R = 9.104$	w. 1 3.05	102.	2246		-11	1 :	2· 3 27 3	1.57875	
<u> </u>	$\Delta n / \Sigma w_{*} =$	0.059 ; $\Sigma \Lambda$	$\varepsilon \Sigma w_{s} =$	4·59:	v	whence 10	$\Delta B =$	3.03w.	+ 12.8i	v_{a}^{2} ;	
<u>'</u> لک	$\Sigma \Delta$	$d/\Sigma w_{a} = 0$	·127.	,	Σ	$\Delta n / \sum w_2 =$	= 0.048	$\sum \Delta \varepsilon /$	$\sum w_2 = 4$.51;	
					_	΄ ΣΔ	$d/\sum w_2$	= -0.	258.	•	

TABLE 2.

Polarisations, dipole moments, and molar Kerr constants (from observations on solutions in carbon tetrachloride at 25°).

Solute $Cl \cdot [CH_{2}]_{2} \cdot Cl \dots$ $Cl \cdot [CH_{2}]_{4} \cdot Cl \dots$ $Cl \cdot [CH_{2}]_{4} \cdot Cl \dots$ $Cl \cdot [CH_{2}]_{4} \cdot Cl \dots$ $Cl \cdot [CH_{2}]_{2} \cdot Cl \dots$ $Br \cdot [CH_{2}]_{2} \cdot Br \dots$ $Br \cdot [CH_{2}]_{4} \cdot Br \dots$ $Br \cdot [CH_{2}]_{4} \cdot Br \dots$ $Br \cdot [CH_{2}]_{4} \cdot Br \dots$	$\alpha \epsilon_1$ $4 \cdot 12$ $7 \cdot 27$ $6 \cdot 09$ $7 \cdot 50$ $6 \cdot 19$ $1 \cdot 05$ $3 \cdot 97$ $3 \cdot 59$ $4 \cdot 59$ $4 \cdot 51$	$\beta \\ -0.294 \\ -0.342 \\ -0.389 \\ -0.427 \\ -0.606 \\ 0.265 \\ 0.204 \\ 0.141 \\ 0.080 \\ 0.162 \\ 0.1$	$\begin{array}{c} \gamma \\ -0.019 \\ -0.012 \\ -0.001 \\ 0 \\ -0.004 \\ 0.037 \\ 0.038 \\ 0.040 \\ 0.041 \\ 0.022 \end{array}$	δ 18·7 0 30·6 34·3 39·4 9·70 0 20·6 31·3 42 2	∞P_2 (c.c.) 66.7 114.8 114.3 149.0 200.7 46.2 114.4 116.1 150.6	$\begin{array}{c} R_{\rm D} \ ({\rm c.c.}) \\ 21\cdot 1 \\ 25\cdot 5 \\ 30\cdot 4 \\ 34\cdot 6 \\ 58\cdot 8 \\ 27\cdot 1 \\ 31\cdot 4 \\ 36\cdot 0 \\ 40\cdot 7 \\ 64\cdot 4 \end{array}$	$\mu (D) = \frac{1.47}{2.07}$ 2.07 2.01 2.35 2.61 0.93 1.99 1.96 2.30 2.30	$\infty(_{m}K_{2}) \times 10^{13}$ $13 \cdot 4$ $-1 \cdot 7_{6}$ $27 \cdot 7$ $34 \cdot 0$ $50 \cdot 3$ $13 \cdot 9$ $-1 \cdot 7_{0}$ $31 \cdot 8$ $51 \cdot 7$ $05 \cdot 0$
$\operatorname{Br} \cdot [\operatorname{CH}_2]_{10} \cdot \operatorname{Br}$	4.51	-0.163	0.033	43.3	207.3	64.4	$2.60 \\ 2.61$	95.0

• It is assumed that $_{\rm D}P = 1.05R_{\rm D}$.

shown, immediately before the solutions were made up: 1,2-dichloroethane, b. p. 84°; 1,3-dichloropropane, b. p. 120-122°; 1,4-dichlorobutane, b. p. 160°; 1,5-dichloropentane, b. p. 84°/22 mm.; 1,10-dichlorodecane, b. p. 130-132°/6-7 mm.; 1,2-dibromoethane, b. p. 131°; 1,3-dibromopropane, b. p. 165-166°; 1,4-dibromobutane, b. p. 88°/16-18 mm.; 1,5-dibromopentane, b. p. 114-116°/20 mm.; 1,10-dibromodecane, m. p. 27°.

Details of procedures, apparatus, computational methods, symbols used, etc., are given in refs. 1. For pure carbon tetrachloride (*i.e.*, when $w_2 = 0$ in Table 1) at 25°, the properties indicated have values as follows: ε (dielectric constant) = 2.2270; d (density) = 1.58454; n (refractive index) = 1.4575; B (Kerr constant) = 0.070 $\times 10^{-7}$.

Previous Measurements.-Dipole-moment determinations made before 1948 are listed by Wesson³ in Tables which contain no values for 1,4-dichlorobutane, 1,5-dichloropentane, and 1,10-dichlorodecane. Since 1948 the following solution measurements (D) have been published by Ketelaar and van Meurs: 4 1,2-dibromoethane 0.94-0.95, 1,3-dibromopropane 1.98-2.00, 1,4-dibromobutane 1.92-1.95, 1,5-dibromopentane 2.24-2.27, and 1,10-dibromodecane 2.51-2.57. Only determinations made in carbon tetrachloride at 20° , as calculated from the Debye equation, are given above; however, this reference 4 lists also measurements at different temperatures in benzene, dioxan, n-hexane, cyclohexane, and in the pure liquid state. Gas measurements are recorded after 1948 as: 1,2-dichloroethane ⁵ 1.91-1.84 at 302-337° K, 1,4-dichlorobutane ⁶ 2.22 at 160-235°.

 $K (= B\lambda/n)$ for gaseous 1,2-dichloroethane at 108.5° has been reported ⁷ as 4.7 \times 10⁻¹⁵, for light of wavelength 546 mµ and a pressure of 760 mm. Molar Kerr constants of 1,2-dichloroethane and 1,2-dibromoethane (in carbon tetrachloride) have been given as $(15.7-16.0) \times 10^{-12}$ and $(17.5-17.8) \times 10^{-12}$, respectively, by Marinin ⁸-these were stated to be almost independent of temperature $(15-70^{\circ})$.

DISCUSSION

Molar Kerr Constants in Relation to Conformations.—Our approach is to calculate the "K's and the moments expected for various possible conformations and to compare the results with the corresponding observed quantities.

For each particular model considered a symmetric matrix

$$\begin{bmatrix} b_{xx} & b_{yx} & b_{zx} \\ b_{xy} & b_{yy} & b_{zy} \\ b_{xz} & b_{yz} & b_{zz} \end{bmatrix}$$

defines the molecular polarisability tensor referred to an arbitrarily selected system of cartesian co-ordinate axes X, Y, Z. The matrix is not in general diagonal: the principal

³ Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.

- Ketelaar and van Meurs, Rec. Trav. chim., 1957, 76, 437.
- Jatkar and Phansalkar, J. Univ. Poona Sci. Techn., 1954, 59.
- Oriani and Smyth, J. Chem. Phys., 1949, 17, 1174. Stuart and Volkmann, Ann. Phys., 1933, 18, 121.
- ⁸ Marinin, Zhur. Fiz. Khim., 1953, 27, 988.

axes transformation which makes it so is effected on the Sydney University digital computer Silliac, an eigenvalue-eigenvector programme being available in the computing library. Tables 3-7 list the principal polarisabilities and their locations with respect to X, Y, Z for the structures shown.

Certain details of bond polarisabilities and of molecular geometry are required for these calculations. The anisotropic polarisabilities of C-Cl and C-Br are taken as in methyl chloride and methyl bromide (Le Fèvre and Le Fèvre, 1955, p. 300), viz; $b_L^{O-OI} =$ 0.318, $b_T^{\text{O-Cl}} = b_V^{\text{O-Cl}} = 0.220$, $b_L^{\text{O-Br}} = 0.465$, $b_T^{\text{O-Br}} = b_V^{\text{O-Br}} = 0.308$ (all as units 10^{-23} c.c.). For the C-C bond, polarisability semi-axes (viz., $b_L^{O-O} = 0.098_{a}$, $b_T^{O-O} = b_T^{O-O} = 0.027_4$) extracted from cyclohexane ⁹ are used; and for the isotropically polarisable ¹ C-H bond, $b_L^{C-H} = b_T^{C-H} = b_T^{C-H} = 0.064 \times 10^{-23} \text{ c.c.}$ The C-C-Cl, C-C-Br, and C-C-C bond angles are assumed to be 110° throughout: small deviations from this angle do not sensitively affect the calculations. Bond moments for C-Cl and C-Br are adopted as 1.86 and 1.82 D, respectively. The nomenclature followed for the various forms is that described in ref. 10, p. 560.

1,2-Dichloro- and 1,2-Dibromo-ethane.—Ainsworth and Karle¹¹ showed that for 1,2-dichloroethane, the gauche-forms are generated by rotating CH₂Cl 109° + 5° from the trans-structure; this has been accepted as such in the present work, but for $X \cdot [CH_a]_n \cdot X$ (X = Cl or Br) where n > 2, the gauche-positions are regarded as requiring 120° rotations from the trans. Computed values of the molecular polarisability semi-axes, their locations with respect to the orthogonal axes X, Y, Z, resultant dipole moments, and molar Kerr constants for the trans-, gauche-, and cis-rotational isomers are summarised in Table 3.

 $\begin{array}{ccccccc} & X & X & X & X \\ & X & C-C' & C-C' & C-C' \\ & Z & X' & 1a & 1b & 1c \end{array}$

TABLE 3.

1.2-Dichloroethane Direction cosines with

			cetion cosine	-S WICH		
Formula	Calc. $b \times 10^{23}$	X	Y	Z	$\mu_{\rm res}$ (calc.)	$_{\rm m}K \times 10^{12}$ (calc.)
la trans	$b_1 = 0.783$	+0.875	-0.484	0		
	$b_{0}^{1} = 0.931$		+0.875	0	0	1.6.
	$b_{0} = 0.723$	0	0	+1	-	
1b gauche	$b_{1} = 0.759$	+0.530	-0.492	+0.691		
8	$b_{1} = 0.840$	+0.848	+0.301	-0.436	2.8.	35
	$b_{1} = 0.838$	+0.006	+0.817	± 0.577	5	
le cie	$b_{3} = 0.818$	± 1	0	0		
10 043	$b_1 = 0.807$		11	Ŏ	3.5	179
	$b_2 = 0.397$ $b_1 = 0.792$	Ŏ		11	0.00	172
	$v_3 = 0.123$	U	U	+ I		
		1	,2-Dibromoet	hane		
la trans	$b_{1} = 0.960$	+0.906	-0.423	0		
	$b_1 = 1.224$	+0.423	+0.906	õ	0	4.3
	$b_{1}^{2} = 0.899$	0	0	тĩ	v	10
	$b_{3} = 0.041$	10.662	-0.435	10.610		
1b gaucha	$b_1 = 0.041$ $b_1 = 1.083$	-0.001	-0.914	+0.591	9.7	79
ID guache	$b_2 = 1.050$	0.740	0.995	-0.520	2.18	12
la dia	$b_3 = 1.009$	- 0-749	-0.365	+0.009		
10 015	$b_1 = 1.007$	+1		0	9.4	90.9
	$v_2 = 1.177$	v	+1	, v	3.45	29Z
	$b_{0} = 0.899$	U	U	+1		

Leybold models indicate that the *cis*-forms are sterically improbable. Reed and Lipscomb ¹² have stated that at -140° the molecule of 1,2-dichloroethane exists in the

Le Fèvre and Le Fèvre, J., 1956, 3549.
Brown and Sheppard, Proc. Roy. Soc., 1955, A, 231, 563.
Ainsworth and Karle, J. Chem. Phys., 1952, 20, 425.
Reed and Lipscomb, Acta Cryst., 1953, 6, 45.

$$\mu$$
 (calc.) = 1.4₈ D; _mK (calc.) = 10.6₅ × 10⁻¹²,

in reasonable accord with the observed values of 1.47 D and 13.4×10^{-12} , respectively.

For 1,2-dibromoethane a mixture of the *trans*- (89%) with the *gauche*-isomer (11%) yields:

$$\mu$$
 (calc.) = 0.93 D; $_{\rm m}K$ (calc.) = 11.7₅ × 10⁻¹²,

again in reasonable accord with the observed values of 0.93 D and 13.9×10^{-12} , respectively.

1,3-Dichloro- and 1,3-Dibromo-propane.—Four rotational isomers can be predicted for each of these molecules (Formulæ 2a—d), but examination of molecular models shows that the gauche-gauche'-isomers must be extremely unstable because of steric interference between the halogen atoms. Computed values for the other three configurations are given in Table 4.

The observed values, from Table 2, are:

1,3-Dichloropropane1,3-Dibromopropane
$$\mu_{obs} = 2.07 \text{ D}; \quad \infty(mK_2) = -1.8 \times 10^{-13}.$$
 $\mu_{obs} = 1.99 \text{ D}; \quad \infty(mK_2) = -1.7 \times 10^{-13}.$

Clearly none of the three isomers 2a—c can be favoured or, alternatively, eliminated on such evidence. This is not incompatible with the spectroscopic studies by Brown and Sheppard,¹⁰ and it appears that contributions from all three are present in solution at ordinary temperatures. A marked simplification of the infrared spectra was observed on crystallisation and, from assignments of C-X stretching frequencies for *trans*- and *gauche*-dispositions and from symmetry considerations, Brown and Sheppard concluded that the solid-state isomer is the non-planar *gauche-gauche*-conformation.

TABLE 4.

1,3-Dichloropropane

		Direct	tion cosines v	with		
Formula	Calc. $b \times 10^{23}$	X	Y	Z	$\mu_{\rm res}$ (calc.)	$_{\rm m}K \times 10^{12}$ (calc.)
2a. trans-trans	$b_1 = 1.106$	+1	0	0		
	$b_{2} = 0.990$	0	+1	0	2.1,	0.6
	$b_{3} = 0.879$	0	0	+1	•	
2b trans-gauche	$b_1 = 1.073$	+0.800	+0.565	-0.503		
•	$b_2 = 0.992$	-0.565	+0.594	-0.573	2.15	1.6
	$b_{3} = 0.910$	-0.503	+0.573	+0.794	-	
2c gauche-gauche	$b_1 = 0.974$	+1	0	0		
	$b_{2} = 0.992$	0	+1	0	2·1.	0.1
	$b_{3} = 1.009$	0	0	+1	·	
		1,3-2	Dibromoprop	ans		
2a trans-trans	$b_1 = 1.361$	+1	0	0		
	$b_{0} = 1.205$	ίō	+i	ŏ	2.0	1.9
	$b_{0} = 1.055$	Ō	Ō	+1	9	
2b trans-gauche	$b_1 = 1.322$	+0.712	+0.640	-0.291		
U	$b_{0}^{1} = 1.207$	-0.640	+0.420	-0.643	2.1	2.4
	$b_{3}^{"} = 1.091$	-0.289	+0.644	+0.709	U	
2c gauche-gauche	$b_1 = 1.150$	+1	0	0		
0 0	$b_{0} = 1.207_{0}$	0	+1	0	2.1,	0·8 ₈
	$b_{8} = 1.263$	0	0	+1	1	

TABLE 5.

1.4-Dichlorobutane

Direction cosines with

Formula	Calc. $b \times 10^{23}$	X	Y	Z	$\mu_{\rm res}$ (calc.)	$_{\rm m}K \times 10^{12}$ (calc.)
3a trans-trans	$b_1 = 1.331$	+0.940	+0.342	0	• • •	_ , ,
	$b_{2} = 1.148$	-0.342	+0.940	0	0	3.2
	$b_3 = 1.034$	0	0	+1		
3b trans-gauche'	$b_1 = 1.246$	+0.978	+0.500	-0.063		
-	$b_{2} = 1.190$	-0.502	+0.872	-0.443	3.04	65
	$b_3 = 1.076$	0.034	+0.446	+0.894	•	
3c gauche-gauche'	$b_1 = 1.267$	+0.268	-0.715	+0.646		
,	$b_2 = 1.176$	+0.939	+0.044	-0.342	0	1.4
	$b_{3} = 1.069_{5}$	+0.216	+0.698	+0.683		
3d gauche'-gauche'	$b_1 = 1.208$	+0.743	-0.669	0		
	$b_2 = 1.140$	+0.669	+0.743	0	3 ·0 ₈	-10
	$b_{3} = 1.164$	0	0	+1	Ū	
		1,4- <i>L</i>	Dibromobuta	ne		
3a trans-trans	$b_1 = 1.620$	+0.900	+0.436	0		
	$b_{2}^{1} = 1.329$	-0.436	+0.900	Ó	0	6.4
	$b_{3} = 1.210$	0	0	+1		
3b trans-gauche'	$b_1 = 1.484$	+0.832	+0.208	-0.223		
Ū	$b_{2} = 1.410$	-0.543	+0.663	-0.512	2.9,	120
	$b_{3} = 1.265$	-0.114	+0.550	+0.828	•	
3c gauche-gauche'	$b_1 = 1.247$	+0.231	+0.735	+0.637		
• •	$b_{2} = 1.357$	-0.966	+0.098	+0.238	0	3 ∙5
	$b_{3} = 1.554$	+0.112	-0.671	+0.733		
3d gauche'-gauche'	$b_1 = 1.333$	+0.848	+0.530	0		
- •	$b_{2}^{-} = 1.407$	-0.530	+0.848	0	2.9	47
	$b_{3}^{-} = 1.418$	0	0	+1	•	

1,4-Dichloro- and 1,4-Dibromo-butane.—The four conformations examined are represented by Fig. 3a—d; throughout it is assumed that the carbon skeleton remains planar. The calculations are summarised in Table 5. Observed values are:

1,4-Dichlorobutane	1,4-Dibromobutane
$\mu_{\rm obs} = 2.01 { m D}$; $_{\infty}(_{ m m}K_2) = 27.7 imes 10^{-12}.$	$\mu_{\rm obs} = 1.96 \text{ D}; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

These suggest that mixtures of polar and non-polar isomers occur together in almost equal proportions, and that within the $\sim 50\%$ polar constituent, conformation 3b outweighs 3d in 1,4-dichlorobutane, but that the reverse is the case for the dibromo-analogue.

1,5-Dichloro- and 1,5-Dibromo-pentane.—Table 6 summarises the physical constants calculated for four conformations. The observed values are:

1,5-Dichloropentane1,5-Dibromopentane
$$\mu_{obs} = 2.35 \text{ D}; \ \infty(\text{m}K_2) = 34.0 \times 10^{-12}.$$
 $\mu_{obs} = 2.30 \text{ D}; \ \infty(\text{m}K_2) = 51.7 \times 10^{-12}.$

These cannot be accounted for by a mixture of *trans-trans-, trans-gauche*, and *gauche-gauche*-forms alone; this indicates that, unlike the 1,3-dihalogenopropanes, there is participation in the mixture of isomers of the now sterically allowable *gauche-gauche'*-form.

1,10-Dichloro- and 1,10-Dibromo-decane.—Computed values for the four conformations considered (analogous to Fig. 3a--d) are summarised in Table 7. Observed values are:

1,10-Dichlorodecane	1,10-Dibromodecane
$\mu_{\rm obs} = 2.61 \text{ D}; \ \ _{\infty}(_{\rm m}K_2) = 50.3 \times 10^{-18}.$	$\mu_{\rm obs} = 2.61 { m D}; \ \ _{\infty}({ m m}K_2) = 95.0 imes 10^{-13}.$

	Direc	tion cosines	s with		
Calc. $b \times 10^{23}$	X	Y	Z	$\mu_{\rm res}$ (calc.)	$_{\rm m}K \times 10^{12}$ (calc.)
$b_1 = 1.512$	+1	0	0	,,	- , ,
$b_{0} = 1.348$	0	+1	0	2.1.	$2 \cdot 2$
$b_{s} = 1.190$	0	0	+1	•	
$b_1 = 1.466$	+0.916	+0.392	-0.086		
$b_{2} = 1.349$	-0.392	+0.827	-0.404	$2 \cdot 1_{5}$	2.9
$b_{3} = 1.234$	-0.088	+0.403	+0.911	•	
$b_1 = 1.381$	+1	0	0		
$b_{2} = 1.349$	0	+1	0	2·1 ₆	0.9
$b_{3} = 1.320$	0	0	+1	•	
$b_1 = 1.381$	+1	0	0		
$b_2 = 1.428$	0	+0.761	-0.649	3·7,	155
$b_{3} = 1.241$	0	+0.649	+0.761		
	1,5-1	Dibromopen	tane		
$b_1 = 1.768$	+1	0	0		
$b_{2} = 1.563$	` 0	+1	0	2.0	3.9
$b_{n} = 1.366$	0	0	+1	•	
$b_1 = 1.707$	+0.841	+0.516	-0.161		
$b_{2} = 1.565$	-0.516	+0.677	-0.525	2.1	3.8
$b_{3} = 1.423$	-0.165	+0.525	+0.836	v	
$b_1 = 1.557$	+1	0	0		
$b_{2} = 1.565$	0	+1	0	$2 \cdot 1_1$	0.3
$b_{3} = 1.574$	0	0	+1	-	
$b_1 = 1.557$	+1	0	0		
$b_{2} = 1.421$	0	+0.717	+0.691	3.6₄	323
$b_{3} = 1.718$	0	-0.691	+0.717	-	
	Calc. $b \times 10^{23}$ $b_1 = 1.512$ $b_2 = 1.348$ $b_3 = 1.190$ $b_1 = 1.466$ $b_2 = 1.349$ $b_3 = 1.234$ $b_1 = 1.381$ $b_2 = 1.349$ $b_3 = 1.320$ $b_1 = 1.381$ $b_2 = 1.428$ $b_3 = 1.241$ $b_1 = 1.768$ $b_2 = 1.563$ $b_3 = 1.366$ $b_1 = 1.707$ $b_2 = 1.565$ $b_3 = 1.423$ $b_1 = 1.557$ $b_2 = 1.557$ $b_2 = 1.557$ $b_2 = 1.557$ $b_3 = 1.574$ $b_1 = 1.557$ $b_2 = 1.421$	Direct Calc. $b \times 10^{23}$ X $b_1 = 1.512$ +1 $b_2 = 1.348$ 0 $b_3 = 1.190$ 0 $b_1 = 1.466$ +0.916 $b_2 = 1.349$ -0.392 $b_3 = 1.234$ -0.088 $b_1 = 1.381$ +1 $b_2 = 1.349$ 0 $b_3 = 1.320$ 0 $b_1 = 1.381$ +1 $b_2 = 1.428$ 0 $b_3 = 1.241$ 0 1,5 $b_1 = 1.768$ +1 $b_2 = 1.563$ 0 $b_3 = 1.266$ 0 $b_3 = 1.266$ 0 $b_3 = 1.265$ 0 $b_3 = 1.265$ 0 $b_3 = 1.265$ 0 $b_3 = 1.577$ +1 $b_2 = 1.557$ +1 $b_2 = 1.428$ 0 $b_3 = 1.428$ 0 $b_3 = 1.574$ 0 $b_3 = 1.428$ 0 $b_3 = 1.421$ 0 $b_3 = 1.577$ +1 $b_2 = 1.557$ +1 $b_2 = 1.421$ 0 $b_3 = 1.421$ 0	$\begin{array}{c ccccc} Direction \ cosines\\ \hline Direction \ cosines\\ \hline Calc. \ b \times 10^{23} & X & Y\\ b_1 = 1\cdot512 & +1 & 0\\ b_2 = 1\cdot348 & 0 & +1\\ b_3 = 1\cdot190 & 0 & 0\\ b_1 = 1\cdot466 & +0\cdot916 & +0\cdot392\\ b_2 = 1\cdot349 & -0\cdot392 & +0\cdot827\\ b_3 = 1\cdot234 & -0\cdot088 & +0\cdot403\\ b_1 = 1\cdot381 & +1 & 0\\ b_2 = 1\cdot349 & 0 & +1\\ b_3 = 1\cdot320 & 0 & 0\\ b_1 = 1\cdot381 & +1 & 0\\ b_2 = 1\cdot428 & 0 & +0\cdot761\\ b_3 = 1\cdot241 & 0 & +0\cdot649\\ \hline & & & & & & & & \\ \hline & & & & & & & & $	$\begin{array}{c c} Direction \ cosines \ with \\ \hline Calc. \ b \times 10^{23} & X & Y & Z \\ \hline b_1 = 1\cdot512 & +1 & 0 & 0 \\ b_2 = 1\cdot348 & 0 & +1 & 0 \\ \hline b_3 = 1\cdot190 & 0 & 0 & +1 \\ \hline b_1 = 1\cdot466 & +0\cdot916 & +0\cdot392 & -0\cdot086 \\ \hline b_2 = 1\cdot349 & -0\cdot392 & +0\cdot827 & -0\cdot404 \\ \hline b_3 = 1\cdot234 & -0\cdot088 & +0\cdot403 & +0\cdot911 \\ \hline b_1 = 1\cdot381 & +1 & 0 & 0 \\ \hline b_3 = 1\cdot320 & 0 & 0 & +1 \\ \hline b_1 = 1\cdot381 & +1 & 0 & 0 \\ \hline b_3 = 1\cdot428 & 0 & +0\cdot761 & -0\cdot649 \\ \hline b_3 = 1\cdot241 & 0 & +0\cdot649 & +0\cdot761 \\ \hline \hline 1,5-Dibromopentane \\ \hline b_1 = 1\cdot768 & +1 & 0 & 0 \\ \hline b_2 = 1\cdot563 & 0 & +1 & 0 \\ \hline b_3 = 1\cdot366 & 0 & 0 & +1 \\ \hline b_1 = 1\cdot707 & +0\cdot841 & +0\cdot516 & -0\cdot161 \\ \hline b_2 = 1\cdot565 & 0 & +1 & 0 \\ \hline b_3 = 1\cdot423 & -0\cdot162 & +0\cdot525 & +0\cdot836 \\ \hline b_1 = 1\cdot557 & +1 & 0 & 0 \\ \hline b_3 = 1\cdot421 & 0 & +0\cdot717 & +0\cdot697 \\ \hline b_3 = 1\cdot421 & 0 & +0\cdot717 & +0\cdot697 \\ \hline b_3 = 1\cdot718 & 0 & -0\cdot697 & +0\cdot717 \\ \hline \end{array}$	$\begin{array}{c ccccc} Direction \ cosines \ with \\ \hline Calc. \ b \times 10^{23} & X & Y & Z & \mu_{res} \ (calc.) \\ b_1 = 1\cdot512 & +1 & 0 & 0 \\ b_2 = 1\cdot348 & 0 & +1 & 0 & 2\cdot 1_3 \\ b_3 = 1\cdot349 & 0 & 0 & +1 \\ b_1 = 1\cdot466 & +0\cdot916 & +0\cdot392 & -0\cdot086 \\ b_2 = 1\cdot349 & -0\cdot392 & +0\cdot827 & -0\cdot404 & 2\cdot 1_5 \\ b_3 = 1\cdot234 & -0\cdot088 & +0\cdot403 & +0\cdot911 \\ b_1 = 1\cdot381 & +1 & 0 & 0 \\ b_2 = 1\cdot349 & 0 & +1 & 0 & 2\cdot 1_6 \\ b_3 = 1\cdot320 & 0 & 0 & +1 \\ b_1 = 1\cdot381 & +1 & 0 & 0 \\ b_2 = 1\cdot428 & 0 & +0\cdot761 & -0\cdot649 & 3\cdot7_2 \\ b_3 = 1\cdot241 & 0 & +0\cdot649 & +0\cdot761 \\ \hline & 1,5-Dibromopentane \\ b_1 = 1\cdot768 & +1 & 0 & 0 \\ b_2 = 1\cdot563 & 0 & +1 & 0 & 2\cdot 0_9 \\ b_3 = 1\cdot366 & 0 & 0 & +1 \\ b_1 = 1\cdot707 & +0\cdot841 & +0\cdot516 & -0\cdot161 \\ b_2 = 1\cdot565 & -0\cdot516 & +0\cdot677 & -0\cdot525 & 2\cdot 1_0 \\ b_3 = 1\cdot423 & -0\cdot162 & +0\cdot525 & +0\cdot836 \\ b_1 = 1\cdot557 & +1 & 0 & 0 \\ b_2 = 1\cdot565 & 0 & +1 & 0 & 2\cdot 1_1 \\ b_3 = 1\cdot577 & 40 & 0 & +1 \\ b_1 = 1\cdot557 & +1 & 0 & 0 \\ b_3 = 1\cdot421 & 0 & +0\cdot717 & +0\cdot697 & 3\cdot6_4 \\ b_3 = 1\cdot718 & 0 & -0\cdot697 & +0\cdot717 \\ \hline \end{array}$

TABLE 6. 1,5-Dichloropentane

If the assumption is valid that the carbon chain is coplanar, then the mixture of isomers appears to contain a 3:1 mixture of polar: non-polar constituents; in both cases the trans-gauche-conformation seems to predominate.

		1,10	-Dichlorode	cane		
		Direc	tion cosines	s with		
Conformn.	Calc. $b \times 10^{23}$	X	Y	Ζ	μ_{res} (calc.)	$_{\rm m}K \times 10^{12}$ (calc.)
trans-trans	$b_1 = 2.540$	+0.981	+0.193	0		_ 、,
	$b_{2} = 2 \cdot 231$	-0.193	+0.981	0	0	11.8
	$b_{3} = 1.967$	0	0	+1		
trans-gauche'	$b_1 = 2.463$	+0.998	+0.058	-0.006		
•	$b_2 = 2.252$	-0.058	+0.977	-0.502	3·0,	70
	$b_{3} = 2.022$	-0.006	+0.205	+0.979	•	
gauche-gauche'	$b_1 = 2.405$	+0.967	-0.242	+0.073		
	$b_{2} = 2.281$	+0.250	+0.865	-0.435	0	4.6
	$b_{3} = 2.051$	+0.043	+0.439	+0.897		
gauche'-gauche'	$b_1 = 2.404$	+0.979	-0.205	0		
	$b_{2} = 2.237$	+0.202	+0.979	0	3.0,	-223
	$b_{3} = 2.097$	0	0	+1	•	
		1,10	-Dibromode	cane		
trans-trans	$b_1 = 2.820$	+0.954	+0.300	0		
	$b_{2} = 2.421$	-0.300	+0.954	Ó	0	16.6
	$b_{3} = 2.143$	0	0	+1		-••
trans-gauche'	$b_1 = 2.686$	+0.982	+0.184			
U	$b_2 = 2.474$	-0.185	+0.934	-0.304	2.9-	126
	$b_{3} = 2.223$	-0.022	+0.305	+0.952	•	
gauche-gauche'	$b_1 = 2.596_5$	+0.771	-0.545	+0.329		
	$b_2 = 2.541$	+0.634	+0.609	-0.476	0	5.1
	$b_{3} = 2.246$	+0.059	+0.576	+0.812		
gauche'-gauche'	$b_1 = 2.582$	+0.965	-0.264	0		
	$b_2 = 2.450$	+0.264	+0.965	0	2·9.	
	$b_{3} = 2.351$	0	0	+1	•	
UNIVERSITY O	f Sydney,					
New Sou	TH WALES, AUST	TRALIA.			[Received.	August 24th, 1961.]

TABLE 7.

[Received, August 24th, 1961.]