267. Molecular Polarisability: Dipole Moments, Molar Kerr Constants, and Apparent Conformations of Some $\alpha \omega$-Dichloro- and -Dibromoalkanes.

By M. Aroney, D. Izsak, and R. J. W. Le Fèvre.

Dipole moments and molar Kerr constants are calculated for various rotational isomers of ten $\alpha \omega$-dihalgenoalkanes, and compared with measurements made on solutions in carbon tetrachloride at 25°. Results are explained by the solutes' being mixtures of isomers. With dichloroethane 73% of trans- and 27% of gauche-forms appear to be present; with dibromoethane the corresponding figures are 89% and 11%. With the higher members, for which the number of possible conformations is greater, conclusions cannot be definite; specifications are given for those forms in each case which, if present together, could produce μ 's and ${ }_{m} K$'s consistent with those found.

This paper deals with relations between the anisotropies of polarisability and the apparent conformations of " flexible" solute molecules at infinite dilution in non-polar media. In particular it reports an examination of ten molecules of type $\left[\mathrm{CH}_{2}\right]_{n} \mathrm{X}_{2}$ (where $n=2,3,4,5$, or 10 , and $\mathrm{X}=\mathrm{Cl}$ or Br) in carbon tetrachloride at 25°. Observations and results are summarised under usual ${ }^{1}$ headings in Tables 1 and 2, after which their interpretations and bearings on previous data are discussed.

Experimental

The dihalogenoalkanes were either purified commercial samples or were prepared from the corresponding glycols (cf. Vogel ${ }^{2}$); they were redistilled, and collected at the temperatures

Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953; Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405; Le Fèvre and Le Fèvre, J., 1953, 4041 ; Rev. Pure Appl. Chem., 1955, 5, 261; Chap. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn., Vol. I, p. 2459.
: Vogel, " Practical Organic Chemistry," Longmans, London, 3rd edn., 1956, pp. 275-283.

Table 1.
Incremental Kerr effects, refractive indexes, dielectric constants, and densities of solutions in carbon tetrachloride at 25°.

whence $\Sigma \Delta n / \sum w_{2}=-0.017 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=7.27$; $\Sigma \Delta d / \Sigma w_{2}=-0.542$.
$\Sigma \Delta n / \Sigma w_{2}=-0.028 ; \Delta \varepsilon=4 \cdot 12 w_{2}+2.44 w_{2}^{2} ;$
$\Sigma \Delta d / \Sigma w_{2}=-0.466$.

1,4 -Dichlorobutane				
949	0.019	-	2.2837	1.57863
1598	0.034	-	2.3240	1.57469
2055	0.041	-	2.3512	1.57187
2938	0.058	-	2.4059	1.56651
3378	0.065	0	2.4370	1.56390
3565	0.070	1	2.4454	1.56273

1.5 -Dichloropentane				
1183	0.030	-	2.3141	1.57650
1646	0.044	0	2.3501	1.57331
2894	0.075	-	2.4453	1.56481
3473	0.097	-	2.4871	1.56114
3874	0.110	0	2.5215	1.55822
5527	0.165	-	2.6441	1.54777

whence $10^{7} \Delta B=2 \cdot 14 w_{2}-5.57 w_{2}^{2}$;
$\Sigma \Delta n / \sum w_{2}=-0.002 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=6.09 ;$
$\Sigma \Delta d / \Sigma w_{2}=-0.616$.

1,10 -Dichlorodecane				
1386	0.035	-	2.3112	1.57124
1975	0.053	-	2.3494	1.56566
2297	0.064	-	2.3690	1.56237
3015	0.085	2	2.4128	1.55646
3485	0.098	2	2.4441	1.55108
3528	0.103	2	2.4478	1.55079
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=2.76 ;$				

$10^{5} w_{2}$	$10^{7} \Delta B$	$10^{5} w_{2}$	$10^{4} \Delta n$	ε^{25}	d_{4}^{25}
$1,2-$ Dibromoethane					
3621	0.025	1788	-	2.2457	1.59198
4701	0.035	1955	-	2.2473	-
6058	0.042	3379	-	2.2622	1.59859
7528	0.052	4651	25	2.2759	1.60424
8397	0.063	5090	-	-	1.60574
13,656	0.103	5492	-	2.2855	1.60785
		6235	34	2.2940	1.61103

whence $10^{7} \Delta B=0.679 w_{2}+0.556 w_{2}^{2}$;
$\Sigma \Delta n / \Sigma w_{2}=0.054 ; ~ \Sigma \Delta \varepsilon / \sum w_{2}=1.05 ;$
$\Sigma \Delta d / \Sigma w_{2}=0.420$.

$10^{5} w_{2}$	$10^{7} \Delta B$	$-10^{4} \Delta n$	ε^{25}	d_{4}^{25}
$1,4-$ Dibromobutane				
1887	0.026	-	2.2938	1.58874
2564	0.037	-	2.3185	1.59026
3011	0.044	-	2.3347	1.59120
3409	0.049	-19	2.3493	1.59215
4275	0.060	-25	2.3813	1.59416
4883	0.070	-29	2.4043	1.59544

whence $10^{7} \Delta B=1.44 w_{2}-0.100 w_{2}^{2}$;
$\Sigma \Delta n / \Sigma w_{2}=0.058 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=3.59$; $\Sigma \Delta d / \Sigma w_{2}=0.223$.

$1,10-$ Dibromodecane				
1082	0.034	-	2.2757	1.58159
1119	0.037	-	2.2775	1.58176
1325	0.042	-	2.2873	1.58124
1711	0.054	-8	2.3040	1.58015
2042	0.068	-10	2.3188	1.57919
2246	-	-11	2.3273	1.57875

whence $10^{7} \Delta B=3.03 w_{2}+12.8 w_{2}^{2}$;
$\Sigma \Delta n / \sum w_{2}=0.048 ; \quad \Sigma \Delta \varepsilon / \sum w_{2}=4.51 ;$

$$
\Sigma \Delta d / \Sigma w_{2}=-0.258
$$

Table 2.
Polarisations, dipole moments, and molar Kerr constants (from observations on solutions in carbon tetrachloride at 25°).

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	∞P_{2} (c.c.)	R_{D} (c.c.)	$\mu(\mathrm{D}){ }^{\text {a }}$	$\infty\left({ }_{m} K_{2}\right) \times 10^{12}$
$\mathrm{Cl} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{Cl} \ldots$	$4 \cdot 12$	-0.294	-0.019	18.7	66.7	21.1	$1 \cdot 47$	$13 \cdot 4$
$\mathrm{Cl} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{Cl} \ldots$	$7 \cdot 27$	-0.342	-0.012	0	114.8	25.5	2.07	-1.76
$\mathrm{Cl} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{Cl} \ldots$	6.09	-0.389	-0.001	$30 \cdot 6$	114.3	30.4	2.01	27.7
$\mathrm{Cl} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{Cl} \ldots$	7.50	-0.427	0	$34 \cdot 3$	149.0	$34 \cdot 6$	2.35	$34 \cdot 0$
$\mathrm{Cl} \cdot\left[\mathrm{CH}_{2}\right]_{10} \cdot \mathrm{Cl} \ldots$	$6 \cdot 19$	-0.606	-0.004	$39 \cdot 4$	$200 \cdot 7$	58.8	$2 \cdot 61$	50.3
$\mathrm{Br} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{Br} \ldots$	1.05	$0 \cdot 265$	0.037	$9 \cdot 70$	$46 \cdot 2$	$27 \cdot 1$	0.93	13.9
$\mathrm{Br} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{Br} \ldots$	3.97	$0 \cdot 204$	0.038	0	114.4	$31 \cdot 4$	1.99	-1.70
$\mathrm{Br} \cdot\left[\mathrm{CH}_{2}\right] \cdot \mathrm{Br} \ldots$	$3 \cdot 59$	$0 \cdot 141$	0.040	20.6	$116 \cdot 1$	36.0	1.96	31.8
$\mathrm{Br} \cdot\left[\mathrm{CH}_{2}\right]_{5} \cdot \mathrm{Br} \ldots$	4.59	0.080	0.041	$31 \cdot 3$	$150 \cdot 6$	$40 \cdot 7$	$2 \cdot 30$	$51 \cdot 7$
$\mathrm{Br} \cdot\left[\mathrm{CH}_{2}\right]_{10} \cdot \mathrm{Br}$	4.51	-0.163	0.033	$43 \cdot 3$	207.3	64.4	$2 \cdot 61$	$95 \cdot 0$

shown, immediately before the solutions were made up: 1,2 -dichloroethane, b. p. 84°; 1,3 -dichloropropane, b. p. $120-122^{\circ}$; 1,4-dichlorobutane, b. p. 160°; 1,5-dichloropentane, b. p. $84^{\circ} / 22 \mathrm{~mm}$.; 1,10 -dichlorodecane, b. p. $130-132^{\circ} / 6-7 \mathrm{~mm}$. ; 1,2 -dibromoethane, b. p. 131°; 1,3-dibromopropane, b. p. $165-166^{\circ}$; 1,4 -dibromobutane, b. p. $88^{\circ} / 16-18 \mathrm{~mm}$.; 1,5-dibromopentane, b. p. 114-116 $/ 20 \mathrm{~mm}$.; l,10-dibromodecane, m. p. 27°.

Details of procedures, apparatus, computational methods, symbols used, etc., are given in refs. 1. For pure carbon tetrachloride (i.e., when $w_{2}=0$ in Table 1) at 25°, the properties indicated have values as follows: ε (dielectric constant) $=2.2270 ; d$ (density) $=1 \cdot 58454$; $n($ refractive index $)=1.4575 ; B($ Kerr constant $)=0.070 \times 10^{-7}$.

Previous Measurements.-Dipole-moment determinations made before 1948 are listed by Wesson ${ }^{3}$ in Tables which contain no values for 1,4-dichlorobutane, 1,5-dichloropentane, and 1,10-dichlorodecane. Since 1948 the following solution measurements (D) have been published by Ketelaar and van Meurs: ${ }^{4} 1,2$-dibromoethane $0.94-0.95$, 1,3 -dibromopropane $1.98-2.00$, 1,4-dibromobutane $1.92-1 \cdot 95$, 1,5-dibromopentane $2 \cdot 24-2 \cdot 27$, and 1,10 -dibromodecane $2 \cdot 51$ 2.57. Only determinations made in carbon tetrachloride at 20°, as calculated from the Debye equation, are given above; however, this reference ${ }^{4}$ lists also measurements at different temperatures in benzene, dioxan, n-hexane, cyclohexane, and in the pure liquid state. Gas measurements are recorded after 1948 as: 1,2-dichloroethane ${ }^{5} 1.91-1.84$ at $302-337^{\circ} \mathrm{K}, 1,4$-dichlorobutane ${ }^{6} 2.22$ at $160-235^{\circ}$.
$K(=B \lambda / n)$ for gaseous 1,2 -dichloroethane at $108 \cdot 5^{\circ}$ has been reported ${ }^{7}$ as 4.7×10^{-15}, for light of wavelength $546 \mathrm{~m} \mu$ and a pressure of 760 mm . Molar Kerr constants of 1,2-dichloroethane and 1,2 -dibromoethane (in carbon tetrachloride) have been given as (15.7-16.0) $\times 10^{-12}$ and ($17.5-17.8) \times 10^{-12}$, respectively, by Marinin ${ }^{8}$-these were stated to be almost independent of temperature $\left(15-70^{\circ}\right)$.

Discussion

Molar Kerr Constants in Relation to Conformations.-Our approach is to calculate the ${ }_{\mathrm{m}} K$'s and the moments expected for various possible conformations and to compare the results with the corresponding observed quantities.

For each particular model considered a symmetric matrix

$$
\left[\begin{array}{lll}
b_{x x} & b_{y x} & b_{z x} \\
b_{x y} & b_{y y} & b_{z y} \\
b_{x z} & b_{y z} & b_{z z}
\end{array}\right]
$$

defines the molecular polarisability tensor referred to an arbitrarily selected system of cartesian co-ordinate axes X, Y, Z. The matrix is not in general diagonal: the principal
${ }^{3}$ Wesson, "Tables of Electric Dipole Moments," Technology Press, Massachusetts Inst. Technology, 1948.

Ketelaar and van Meurs, Rec. Trav. chim., 1957, 76, 437.
${ }^{5}$ Jatkar and Phansalkar, J. Univ. Poona Sci. Techn., 1954, 59.
${ }^{6}$ Oriani and Smyth, J. Chem. Phys., 1949, 17, 1174.
7 Stuart and Volkmann, Ann. Phys., 1933, 18, 121.
${ }^{8}$ Marinin, Zhur. Fiz. Khim., 1953, 27, 988.
axes transformation which makes it so is effected on the Sydney University digital computer Silliac, an eigenvalue-eigenvector programme being available in the computing library. Tables $3-7$ list the principal polarisabilities and their locations with respect to X, Y, Z for the structures shown.

Certain details of bond polarisabilities and of molecular geometry are required for these calculations. The anisotropic polarisabilities of $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{Br}$ are taken as in methyl chloride and methyl bromide (Le Fèvre and Le Fèvre, 1955, p. 300), viz.: $b_{L}{ }^{0-0 l}=$ $0.318, b_{T}{ }^{0-\mathrm{Cl}}=b_{V}{ }^{0-\mathrm{Cl}}=0 \cdot 220, b_{L}{ }^{\mathrm{O}-\mathrm{Br}}=0 \cdot 465, b_{T}{ }^{\mathrm{C}-\mathrm{Br}}=b_{V}{ }^{\mathrm{O}-\mathrm{Br}}=0.308$ (all as units 10^{-23} c.c.). For the C-C bond, polarisability semi-axes (viz., $b_{L}{ }^{0-\sigma}=0.098_{6}, b_{T}{ }^{0-0}=b_{V}{ }^{0-0}=0.027_{4}$) extracted from cyclohexane ${ }^{9}$ are used; and for the isotropically polarisable ${ }^{1} \mathrm{C}-\mathrm{H}$ bond, $b_{L}{ }^{\mathrm{C}-\mathrm{H}}=b_{T} \mathrm{C}-\mathrm{H}=b_{V}{ }^{\mathrm{C}-\mathrm{H}}=0.064 \times 10^{-23}$ c.c. The $\mathrm{C}-\mathrm{C}-\mathrm{Cl}, \mathrm{C}-\mathrm{C}-\mathrm{Br}$, and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles are assumed to be 110° throughout: small deviations from this angle do not sensitively affect the calculations. Bond moments for $\mathrm{C}-\mathrm{Cl}$ and $\mathrm{C}-\mathrm{Br}$ are adopted as 1.86 and 1.82 D , respectively. The nomenclature followed for the various forms is that described in ref. 10, p. 560.

1,2-Dichloro- and 1,2-Dibromo-ethane.-Ainsworth and Karle ${ }^{11}$ showed that for 1,2-dichloroethane, the gauche-forms are generated by rotating $\mathrm{CH}_{2} \mathrm{Cl} 109^{\circ} \pm 5^{\circ}$ from the trans-structure; this has been accepted as such in the present work, but for $\mathrm{X} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{X}$ ($\mathrm{X}=\mathrm{Cl}$ or Br) where $n>2$, the gauche-positions are regarded as requiring 120° rotations from the trans. Computed values of the molecular polarisability semi-axes, their locations with respect to the orthogonal axes X, Y, Z, resultant dipole moments, and molar Kerr constants for the trans-, gauche-, and cis-rotational isomers are summarised in Table 3.

Table 3.
1,2-Dichloroethane

Direction cosines with						
Formula	Calc. $b \times 10^{23}$	X	Y	Z	$\mu_{\text {res }}$ (calc.)	${ }_{\mathrm{m}} K \times 10^{12}$ (calc.)
la trans	$b_{1}=0.783$	+0.875	-0.484	0		
	$b_{2}=0.931$	$+0.484$	+0.875	0	0	$1 \cdot 64$
	$b_{3}=0.723$	0	0	+1		
lb gauche	$b_{1}=0.759$	$+0.530$	-0.492	+0.691		
	$b_{2}=0.840$	$+0.848$	$+0.301$	-0.436	$2 \cdot 85$	35
	$b_{3}=0.838$	$+0.006$	$+0.817$	$+0.577$		
1c cis	$b_{1}=0.818$	$+1$	0	0		
	$b_{2}=0.897$	0	+1	0	$3 \cdot 50$	172
	$b_{3}=0.723$	0	0	+1		
1,2-Dibromoethane						
1a trans	$b_{1}=0.960$	$+0.906$	-0.423	0		
	$b_{2}=1.224$	$+0.423$	$+0.906$	0	0	$4 \cdot 3$
	$b_{3}=0.899$	0		+1		
	$b_{1}=0.941$	$+0.662$	-0.435	$+0.610$		
lb gauche	$b_{2}=1.083$	-0.001	+0.814	$+0.581$	$2 \cdot 78$	72
	$b_{3}=1.059$	-0.749	-0.385	$+0.539$		
1c cis	$b_{1}=1.007$ $b_{2}=1.177$					
	$b_{2}=1.177$ $b_{3}=0.899$	0 0	+1 0	0 +1	$\mathbf{3} \cdot \mathbf{4}_{\mathbf{2}}$	292

Leybold models indicate that the cis-forms are sterically improbable. Reed and Lipscomb ${ }^{12}$ have stated that at -140° the molecule of 1,2 -dichloroethane exists in the

[^0]trans-configuration; electron-diffraction data led Ainsworth and Karle ${ }^{11}$ to believe that at 22° the amount of gauche-isomer is $27 \pm 5 \%$. For a mixture of the trans- (73%) with the gauche-isomer (27%) of 1,2 -dichloroethane, the following are predicted:
$$
\mu(\text { calc. })=1 \cdot 4_{8} \mathrm{D} ;{ }_{\mathrm{m}} K(\text { calc. })=10.6_{5} \times 10^{-12}
$$
in reasonable accord with the observed values of 1.47 D and 13.4×10^{-12}, respectively.
For 1,2-dibromoethane a mixture of the trans- (89%) with the gauche-isomer (11%) yields:
$$
\mu(\text { calc. })=0.93 \mathrm{D} ;{ }_{\mathrm{m}} K(\text { calc. })=11.7_{5} \times 10^{-12}
$$
again in reasonable accord with the observed values of 0.93 D and $13.9 \times 10^{\mathbf{- 1 2}}$, respectively.

1,3-Dichloro- and 1,3-Dibromo-propane.-Four rotational isomers can be predicted for each of these molecules (Formulæ 2a-d), but examination of molecular models shows that the gauche-gauche'-isomers must be extremely unstable because of steric interference between the halogen atoms. Computed values for the other three configurations are given in Table 4.

The observed values, from Table 2, are:

> 1,3-Dichloropropane
> $\mu_{\mathrm{obs}}=2.07 \mathrm{D} ; \infty\left({ }_{\mathrm{m}} K_{2}\right)=-1.8 \times 10^{-12}$.

1,3-Dibromopropane
$\mu_{\mathrm{obs}}=1.99 \mathrm{D} ; \infty\left({ }_{\mathrm{m}} K_{2}\right)=-1.7 \times 10^{-18}$.
Clearly none of the three isomers $2 a-c$ can be favoured or, alternatively, eliminated on such evidence. This is not incompatible with the spectroscopic studies by Brown and Sheppard, ${ }^{10}$ and it appears that contributions from all three are present in solution at ordinary temperatures. A marked simplification of the infrared spectra was observed on crystallisation and, from assignments of $\mathrm{C}-\mathrm{X}$ stretching frequencies for trans- and gauche-dispositions and from symmetry considerations, Brown and Sheppard concluded that the solid-state isomer is the non-planar gauche-gauche-conformation.

Table 4.
1,3-Dichloropropane
Direction cosines with

Formula	Calc. $b \times 10^{38}$	X	Y	Z	$\mu_{\text {res }}$ (calc.)	${ }_{\mathrm{m}} K \times 10^{18}$ (calc.)
2a trans-trans	$b_{1}=1 \cdot 106$	+1	0	0		
	$b_{2}=0.990$	0	+1	0	$2 \cdot 13$	$0 \cdot 6$
	$b_{3}=0.879$	0	0	+1		
2b trans-gauche	$b_{1}=1.073$	$+0.800$	$+0.565$	-0.203		
	$b_{2}=0.992$	-0.565	$+0.594$	-0.573	$2 \cdot 15$	1.6
	$b_{3}=0.910$	-0.203	+0.573	$+0.794$		
2c gauche-gauche	$b_{1}=0.974$	+1	0	0		
	$b_{2}=0.992$	0	$+1$	0	$2 \cdot 16$	$0 \cdot 1$
	$b_{3}=1.009$	0	0	+1		
1,3-Dibromopropane						
2a trans-trans	$b_{1}=1.361$	$+1$	0	0		
	$b_{2}=1.205$	0	+1	0	$\mathbf{2 \cdot 0}$	1.9
	$b_{3}=1.055$	0	0	$+1$		
2b trans-gauche	$b_{1}=1.322$	$+0.712$	$+0.640$	-0.291		
	$b_{2}=1.207$	-0.640	+0.420	-0.643 +0.709	$2 \cdot 10$	$2 \cdot 4$
	$b_{3}=1.091$	-0.289	+0.644	$+0.709$		
2c gauche-gauche	$b_{1}=1.150$	+1	0	0		
	$b_{2}=1.207_{5}$	0	+1	0	$2 \cdot 11$	$0 \cdot 85$
	$b_{8}=1.263$	0	0	+1		

Table 5.
1,4-Dichlorobutane
Direction cosines with

Formula	Calc. $b \times 10^{23}$	X	Y	Z	$\mu_{\text {res }}$ (calc.)	${ }_{\mathrm{m}} K \times 10^{12}$ (calc.)
3a trans-trans	$b_{1}=1.331$	$+0.940$	+0.342	0	0	$3 \cdot 2$
	$b_{2}=1.148$	-0.342	+0.940	0		
	$b_{3}=1.034$	0	0	+1		
3b trans-gauche'	$b_{1}=1.246$	$+0.978$	$+0.200$	-0.063	$3 \cdot 0_{4}$	65
	$b_{2}=1.190$	-0.207	$+0.872$	-0.443		
	$b_{3}=1.076$	-0.034	$+0.446$	+0.894		
3c gauche-gauche'	$b_{1}=1.267$	$+0.268$	-0.715	$+0.646$	0	1.4
	$b_{2}=1.176$	+0.939	$+0.044$	-0.342		
	$b_{3}=1.0695$	$+0.216$	+0.698	+0.683	3.03	
3d gauche'-gauche'	$b_{1}=1.208$	$+0.743$	-0.669			-10
	$b_{2}=1.140$	+0.669	$+0.743$	0		
	$b_{3}=1 \cdot 164$	0	0	+1		
1,4-Dibromobutane						
3a trans-trans	$b_{1}=1.620$	$+0.900$	+0.436	0	0	6.4
	$b_{2}=1.329$	-0.436	$+0.900$	0		
	$b_{3}=1.210$	0	0	+1		
3b trans-gauche'	$b_{1}=1.484$	+0.832	+0.508	-0.223	$2 \cdot 97$	120
	$b_{2}=1.410$	-0.543	+0.663	-0.515		
	$b_{3}=1.265$	-0.114	$+0.550$	$+0.828$		
3c gauche-gauche'	$b_{1}=1.247$	$+0.231$	+0.735	$+0.637$	0	3.5
	$b_{2}=1.357$	-0.966	$+0.098$	+0.238		
	$b_{3}=1.554$	+0.112	-0.671	$+0.733$		
3d gauche'-gauche'	$b_{1}=1.333$	$+0.848$	$+0.530$	0	$2 \cdot 9$ 。	47
	$b_{2}=1 \cdot 407$	-0.530	$+0.848$	0		
	$b_{3}=1.418$	0	0	+1		

1,4-Dichloro- and 1,4-Dibromo-butane.-The four conformations examined are represented by Fig. 3a-d; throughout it is assumed that the carbon skeleton remains planar. The calculations are summarised in Table 5. Observed values are:

$$
\begin{array}{cc}
1,4 \text {-Dichlorobutane } & \text { 1,4-Dibromobutane } \\
\mu_{\mathrm{obs}}=2.01 \mathrm{D} ; \infty\left(K_{\mathrm{m}} K_{2}\right)=27.7 \times 10^{-12} . & \mu_{\mathrm{obs}}=1.96 \mathrm{D} ; \infty\left({ }_{\mathrm{m}} K_{2}\right)=31.8 \times 10^{-12} .
\end{array}
$$

These suggest that mixtures of polar and non-polar isomers occur together in almost equal proportions, and that within the $\sim \mathbf{5 0} \%$ polar constituent, conformation 3 b outweighs 3d in 1,4-dichlorobutane, but that the reverse is the case for the dibromoanalogue.

1,5-Dichloro- and 1,5-Dibromo-pentane.-Table 6 summarises the physical constants calculated for four conformations. The observed values are:

$$
\begin{array}{cc}
\text { 1,5-Dichloropentane } & \text { 1,5-Dibromopentane } \\
\mu_{\mathrm{obs}}=2.35 \mathrm{D} ; \infty\left(\mathrm{m}_{\mathrm{m}}\right)=34.0 \times 10^{-12} . & \mu_{\mathrm{obs}}=2.30 \mathrm{D} ; \infty\left({ }_{\mathrm{m}} K_{2}\right)=51.7 \times 10^{-12} .
\end{array}
$$

These cannot be accounted for by a mixture of trans-trans-, trans-gauche, and gauche-gaucheforms alone; this indicates that, unlike the 1,3 -dihalogenopropanes, there is participation in the mixture of isomers of the now sterically allowable gauche-gauche'-form.

1,10-Dichloro- and 1,10-Dibromo-decane.-Computed values for the four conformations considered (analogous to Fig. 3a-d) are summarised in Table 7. Observed values are:

1,10-Dichlorodecane
$\mu_{\text {obs }}=2.61 \mathrm{D} ; \infty\left(\mathrm{m} K_{2}\right)=50.3 \times 10^{-12}$.

1,10-Dibromodecane
$\mu_{\text {obs }}=2.61 \mathrm{D} ; \infty\left({ }_{\mathrm{m}} K_{\mathrm{z}}\right)=95.0 \times 10^{-12}$.

Table 6.
1,5-Dichloropentane
Direction cosines with

Conformn.	Calc. $b \times 10^{23}$	X	Y	Z	$\mu_{\text {res }}$ (calc.)	${ }_{\mathrm{m}} K \times 10^{12}$ (calc.)
trans-trans	$b_{1}=1.512$	+1	0	0		
	$b_{2}=1.348$	0	+1	0	$2 \cdot 13$	$2 \cdot 2$
	$b_{3}=1 \cdot 190$	0	0	$+1$		
trans-gauche	$b_{1}=1.466$	$+0.916$	+0.392	-0.086		
	$b_{2}=1.349$	-0.392	+0.827	-0.404	$2 \cdot 15$	2.9
	$b_{3}=1.234$	-0.088	$+0.403$	+0.911		
gauche-gauche	$b_{1}=1.381$	+1	0	0		
	$b_{2}=1.349$	0	+1	0	$2 \cdot 16$	0.9
	$b_{3}=1.320$	0	0	+1		
gauche-gauche'	$b_{1}=1.381$	+1	0	0		
	$b_{2}=1.428$	0	$+0.761$	-0.649	3.72	155
	$b_{3}=1.241$	0	$+0.649$	+0.761		
1,5-Dibromopentane						
trans-trans	$b_{1}=1.768$	+1	0	0		
	$b_{2}=1.563$	0	+1	0	2.09	$3 \cdot 9$
	$b_{3}=1.366$	0	0	+1		
trans-gauche	$b_{1}=1.707$	$+0.841$	$+0.516$	-0.161		
	$b_{2}=1.565$	-0.516	+0.677	-0.525	$2 \cdot 10$	$3 \cdot 8$
	$b_{3}=1.423$	-0.162	+0.525	+0.836		
gauche-gauche	$b_{1}=1.557$	$+1$	0	0		
	$b_{2}=1.565$	0	$+1$	0	$2 \cdot 11$	$0 \cdot 3$
	$b_{3}=1.574$	0	0	+1		
gauche-gauche ${ }^{\prime}$	$b_{1}=1.557$	+1	0	0		
	$b_{2}=1.421$	0	$+0.717$	$+0.697$	3.64	323
	$b_{3}=1.718$	0	-0.697	+0.717		

If the assumption is valid that the carbon chain is coplanar, then the mixture of isomers appears to contain a 3:1 mixture of polar: non-polar constituents; in both cases the trans-gauche-conformation seems to predominate.

Table 7.
1,10-Dichlorodecane
Direction cosines with

Conformn.	Calc. $b \times 10^{23}$	X	Y	Z	$\mu_{\text {rea }}$ (calc.)	${ }_{\mathrm{m}} K \times 10^{12}$ (calc.)
trans-trans	$b_{1}=2.540$	+0.981	$+0.193$	0		
	$b_{2}=2.231$	-0.193	$+0.981$	0	0	11.8
	$b_{3}=1.967$	0	0	$+1$		
trans-gauche'	$b_{1}=2.463$	+0.998	$+0.058$	-0.006		
	$b_{2}=2.252$	-0.058	$+0.977$	-0.205	3.04	70
	$b_{3}=2.022$	-0.006	$+0.205$	$+0.979$		
gauche-gauche'	$b_{1}=2.405$	$+0.967$	-0.242	+0.073		
	$b_{2}=2.281$	$+0.250$	$+0.865$	-0.435	0	$4 \cdot 6$
	$b_{3}=2.051$	+0.043	$+0.439$	$+0.897$		
gauche'-gauche'	$b_{1}=2.404$	+0.979	-0.205	0		
	$b_{2}=2.237$	$+0.205$	$+0.979$	0	$\mathbf{3} \cdot \mathbf{0}_{3}$	-223
	$b_{3}=2.097$	0	0	$+1$		
1,10-Dibromodecane						
trans-trans	$b_{1}=2 \cdot 820$	$+0.954$	$+0.300$	0		
	$b_{2}=2.421$	-0.300	$+0.954$	0	0	$16 \cdot 6$
	$b_{8}=2.143$	0	0	$+1$		
trans-gauche'	$b_{1}=2 \cdot 686$	+0.982	$+0.184$	-0.031		
	$b_{2}=2.474$	-0.185	$+0.934$	-0.304	$\mathbf{2 \cdot 9 7}$	126
	$b_{3}=2.223$	-0.027	$+0.305$	$+0.952$		
gauche-gauche'	$b_{1}=2.596_{5}$	$+0.771$	-0.545	+0.329		
	$b_{2}=2.541$	$+0.634$	$+0.609$	-0.476	0	$5 \cdot 1$
	$b_{3}=2 \cdot 246$	$+0.059$	$+0.576$	$+0.815$		
gauche'-gauche'	$b_{1}=2.582$	$+0.965$	-0.264	0		
	$b_{2}=2.450$	+0.264	$+0.965$	0 +1	$2 \cdot 98$	- 158
	$b_{3}=2 \cdot 351$	0	0	+1		

University of Sydney,
New South Wales, Australia.
[Received, August 24th, 1961.]

[^0]: - Le Fèvre and Le Fèvre, J., 1956, 3549.

 10 Brown and Sheppard, Proc. Roy. Soc., 1955, A, 231, 563.
 ${ }_{11}$ Ainsworth and Karle, J. Chem. Phys., 1952, 20, 425.
 15 Reed and Lipscomb, Acta Cryst., 1953, 6, 45.

